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ABSTRACT

An approach to the analyses of discrete-valued time series is discussed.

The analyses are accomplished in the spectral domain using the Walsh-Fourier

transform which is based on Walsh functions. This approach will enable an

investigator of discrete systems to analyze the data in terms of square-

waveforms and sequency rather than sine-waves and frequency.

Wdevelops a general signal-plus-noise type model for discrete-valued

time series in which Walsh-Fourier spectral analysis is of interest. 4We con-

siderthe problems of detecting whether or not a common signal exists in

repeated measures on discrete-valued time series and in discrete-valued processes

collected in an experimental design. /eshow that these models may depend on

unknown regression parameters and we developl consistent estimates of these para-

meters based on the finite Walsh-Fourier transform Applications to certain

Markov models are given, however, the methods presented also apply to non-Markov

cases.
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1. INTRODUCTION

Implicit in the Fourier (trigonometric) analysis of time series is one of

two extreme assumptions about the process: (1) The very long stretch of the

time series is the only time series we want to consider and consists of the

superposition of not too many sinusoidal terms of substantially different

frequencies; and (2) The time series is to be regarded as a realization of an

eraodic Gaussian process. It is one of many possible time series and the analyses

are directed toward the properties of the ensemble of the series, not toward

those of a specific realization (cf. Brillinger and Tukey (1982)).

There are, however, many physical situations in which time series are either

positive or discrete and are patently non-normal so that the analyses cannot be

handled by transforming the data and applying Gaussian techniques (see, for

example, Lewis (1980), p. 154). Similarly there are processes, such as those

which take values in a discrete finite set, which can neither be thought of as

Gaussian, nor as the superpositions of well separated sinusoids. Models for

discrete-valued time series which have an ARMA structure are considered in

Jacobs and Lewis (1978 a,b, 1983) and in Lewis (1980). For the case of continuous-

valued non-normal time series it is perhaps still reasonable, in appropriate cases,

to do spectral analysis via trigonometric methods. However, in the cases where

time series take values in a discrete (and possibly finite) set, it makes little

statistical sense to correlate the data with sines and cosines. As an alternative,

we suggest that the spectral analysis of discrete-valued time series be accomplished

in the "sequency" domain via the Walsh-Fourier transform (cf. Ahmed and Rao (1975),

Kohn (1980 a) or Morettin (1981)). This seems to be a natural alternative to

the usual Fourier analysis since the Walsh-Fourier transform is based on the

"square-wave" Walsh functions. This approach would enable investigators to analyze

discrete-valued time series (which we may think of as square-waveforms) in terms
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of square-waves and sequency (switches per unit time) rather than sine-waves

and frequency. As emperically demonstrated in Beauchamp (1975), "the respective

roles of Walsh and Fourier spectral analysis for discontinuous and smooth-

varying waveforms are clear. Where the signal is derived from sinusoidally-

based waveforms, Fourier analysis is relevant. Where the signal contains sharp

discontinuities and a limited number of levels, Walsh analysis is appropriate".

The Walsh functions, which are defined via the Rademacher functions (cf.

Ahmed and Rao (1975), Kohn (1980 a) or Morettin (1981)), form a complete ortho-

normal sequence on EO,1) and take on only two values, +1 and -1 (or 'on'

and 'off'). They are ordered by the number of zero-crossings (or switches)

which is called sequency. Let W(n,X), n = 0,1,2,..., 0 < X < 1, denote the

n-th sequency-ordered Walsh function, then W(n,-) makes n zero-crossings in

[O,1). The first eight discrete, sequency-ordered Walsh functions, W(n,m/N),

m,n = 0,1,...,7, corresponding to a sample of length N = 23 are shown in

Figure 1.1 in an 8 x 8 symmetric matrix called the Walsh ordered Hadamard

matrix, HW(3 ). See Appendix A for details. We note that other orderings exist,

for example, Paley order and Hadamard order are often used (cf. Ahmed and Rao

(1975)), however, sequency or Walsh ordering is more natural in that it is

comparable to the frequency ordering of sines and cosines. We will discuss

methods of generating the discrete Walsh functions in Appendix A.



3

I 1 1 1 -I -1 -1 -1

1 1 -1 -I -1 -I 1 1

H W(3) =

1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

1 -1 I -1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1

FIGURE 1.1: Sequency-ordered discrete Walsh functions, W(nm/N),

n,m = O,1,...,7, for a sample of size N =2 3 as the

rows of a Hadamard matrix.

Walsh spectral analysis has been used for several purposes, primarily in

the Engineering sciences, such as speech processing, word recognition, image

coding and transmission, filtering and multiplexing. It has also been used to

describe biological and medical systems such as monitoring EEG and ECG signals.

See, for example, the Proceedings on the Applications of Walsh Functions, Ahmed

and Rao (1975), Beauchamp (1975) and Harmuth (1972) to mention a few. Appli-

cations of Walsh functions in the statistics literature are rather scarce and

we mention two. Ott and Kronmal (1976) use the Walsh transform in classification

and prediction problems for strictly stationary binary time series. Stoffer and

Panchalingam (1985) analyze simulated and real binary time series in the

sequency domain.

At present, there are two modes of development of Walsh spectral analysis

in the literature. The first mode is termed Walsh spectral analysis and is

developed via the concept of dyadic stationarity. That is, it is based on

processes {X(n); n = 0,1,2,...} for which Cov(X(n),X(n 0m)) = B(m) is a
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function only of the dyadic distance between n and n 4 m, where n $ m

denotes the dyadic addition of n and m (cf. Morettin (1974 b, 1981) for

definitions, discussions and references). In this mode, one has in mind that

the process of interest is the superposition of not too many Walsh functions
K

of substantially different sequencies, that is, X(n) = I Z(k)W(n, k ) where
k=1 k

Z(1),...,Z(K) are uncorrelated random variables with mean zero and variance

2ak k = 1,...,K, with ,.. constants, Xi 0 A., i j. The other

mode of development is termed Walsh-Fourier spectral analysis and is based on

real time stationarity. Theoretical results concerning the statistical appli-

cation of Walsh-Fourier spectral analysis are relatively recent and to the best

of my knowledge, are limited to the works of Kohn (1980 a,b), Morettin (1974 a,

1981, 1983) and Stoffer (1985). One is warned that in the examination of non-

mathematical literature concerning this subject, to keep in mind that the two

different modes exist, although the particular mode is not always apparent.

This matter can be quite confusing since the results are considerably different

and results from one mode do not typically apply to the other. An excellent

review of the two different approaches is given in Morettin (1981). We believe

that although dyadic time has some theoretical appeal in the Walsh spectral

domain, due to its strange behavior (see, for example, the discussions in

Robinson (1972) and Beauchamp (1975)), it is of little practical use. We there-

fore, concentrate on real time stationary processes.

A brief account of the existing Walsh-Fourier theory as well as some new

results and necessary tools to be used in the sequel are given in the next

section. In Section 3 we present a general signal-plus-noise type model for

discrete-valued time series in which Walsh-Fourier spectral analysis is of

interest. Next we consider the problem of detecting whether or not a common

signal exists in repeated measurements on discrete-valued time series. It is
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shown that this method extends to discrete-valued time series collected in an experi-

mental design. Then, we consider the analysis of discrete signal-plus-noise

models in a regression setting in which the signal is observable but the

process depends on regression parameters. Our main goal is to estimate, via

Walsh-Fourier spectral methods, the regression parameters and the noise spectrum.

In all cases we give concrete examples by showing that certain Markov chains

satisfy our models, however, the methods presented here also apply in non-

Markov cases. For completeness, we provide a discussion in Appendix A on simple

and economic methods for generating the discrete sequency-ordered Walsh functions

and hence the finite Walsh-Fourier transform.
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2. PRELIMINARIES

In this section we give definitions, establish some new results, and give

a brief summary of the existing Walsh-Fourier theory for stationary time series

which we use in the sequel. In particular, we concentrate on those properties

which we can directly apply to discrete-valued time series. Hence, for

example, we do not consider properties of processes which are generalized linear

processes; such processes can be handled by the theory given in Kohn (1980 a,b),

Morettin (1983) and Stoffer (1985). At present, our discussion will be for

univariate time series, the multivariate versions follow in an obvious way and

we mention them briefly at the end of this section.

Let X(O), X(1),...,X(N-1) be a sample of length N = 2p, p > 0 integer,

from a weakly stationary time series, {X(n), n = 0,±1,±2,...}, with absolutely

summable autocovariance function, y(h) = Cov(X(n),X(n+h)), h = 0,±1,±2,....

We assume for now that the constant mean Value of X(n) is zero. Let W(n,A)

be the n-th Walsh function in sequency order, and let

-1/2 N-1
dN(A) = N X X(n)W(n,X), 0 < X < 1 (2.1)n=O

be the finite (or discrete) Walsh-Fourier transform of the data. The logical

covariance of X(n) (cf. Robinson (1972) or Kohn (1980 a)) is defined to be

N-1

T(j) = N-  y(j k - k)
k=O

where by j 4 k we mean the dyadic addition of j and k. It can then be

shown (cf. Kohn (1980 a)) that the variance of dN(W is given by

4"-: , ..- . ._ ' . . N ) is given by ' -'- -% -
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N-1
Var{d )} = I T(j)W(j,X). (2.2)

j=O

Taking the limit (N ) in (2.2) we have that Var{dN()} + f(X) where

f(A) = T r(j)W(j,X), 0 < X < 1 (2.3)
j=0

is called the Walsh-Fourier spectral density of X(n). We note that f()

exists since the absolute summability of y(h) implies the absolute summability

of T(j). Specifically, Kohn (1980 a, Lemma 3) shows that if

lim I (1 - IJj/ 2n)  I,(j), < (2.4)
n-ow iJ<2n

then I(j)I < - and f() is well-defined.

j=0

If X(0),X(1),...,X(N-l) is a sample of length N = 2
p , the finite trans-

form (2.1) is calculated for XN = m'N, m = 0,1,...,N-1. Since the discrete

Walsh functions are symmetric in their arguments for N = 2p, that is,

W(n,m/N) = W(m,n/N), m,n = 0,1,...,N-1, (2.5)

the value of XN  in the finite Walsh-Fourier transform corresponds to sequency.

As with the usual Fourier analysis, if the mean of the series is unknown, the

only sequency of the form XN = m/N for which the transform cannot be evaluated

is at the zero (m = 0) sequency. To see this, let e = EX(n), all n, and

note that for m - 0,1,...,N-1,

-1 N-I
N I W(n,m/N) = 6m

,  (2.6)
n-O 0
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where 6 is the Kronecker delta. See Kohn (1980 a, Lemma 1). It is clear

from (2.6) that the mean centered transform will be the uncentered transform

except at m = 0, and in particular

-12N-I1/ m

E{dN(m/N)} = N-112 N 8W(n,m/N) = N /2,6m ,
n=O 0

m = 0,1,...,N-1.

Kohn (1980 a, Corollary 3) gives the following useful results on the con-

vergence of the second moment of the finite Walsh-Fourier transform under con-

dition (2.4). Let XN be dyadically rational (that is, its binary representation

is finite). If XN 9 X 0 as N = 2p --, then

E{d2(N)I + f(A). (2.7)

In general, the asymptotic covariance of the Walsh-Fourier transform at two

distinct sequencies is not zero (cf. Kohn (1980 a), Theorem 3). However, if

X1, N and x2,N are dyadically rational and Ix1,N-X2,N1I> N- 1 with Xi, N 0 X 0,

i = 1,2 as N = 2p  then

N E{dN 1,N )dN (2,N )I ) 0.

Various authors have established central limit theorems for the finite

*Walsh-Fourier transform under a wide range of conditions (cf. Kohn (1980 a),

Morettin (1983) and Stoffer (1985)). We state three versions which are applicable

-\ to discrete-valued time series. The first version (Assumption 2.1) follows its

trigonometric counterpart given in Hannan (1973) and can be found in Kohn

(1980 a, Theorem 4). The second version (Assumption 2.2) follows its trigono-

metric counterpart based on the existence of higher moments given in Brillinger
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(1975) and can be found in Morettin (1983, Theorem 1). We remark that the

above two versions exist side by side and that neither is included in the

other (cf. Morettin (1983)). The third version (Assumption 2.3) is similar to

Stoffer (1985, Theorem 3.1), however it is sufficiently different to warrant a

proof which is provided in Appendix B. This version establishes a central

limit theorem for discrete-valued second-order stationary processes which

satisfy a type of finite dependence property.

ASSUMPTION 2.1: X(n) is strictly stationary with zero mean. Let F be then

a-field generated by {X(j), j < n}; put

= EE{E(X(n) F n. - E(X(n)J F nj)} 2 3 1/2 0,

F is trivial and I a. < .

j=0 J

ASSUMPTION 2.2: X(n) is strictly stationary with zero mean and finite moments.

Let Cr(Jig ... ) = Cum{X(j1) ,...,X(j r)} be the r-th cumulant of X(n),

jig = 0,±1,±2.. r X ICr(j 1,.,jr- 1 )I < .
j1=0 Jr-1 =0

ASSUMPTION 2.3: X(n) is second-order stationary with zero mean and covariance

function y(k). sup nE{IX(n) 12+6 < . for some 6 > 0. Let Fn be the a-field

generated by {X(j), j i n}. There exists a positive integer K such that

(i) E{X(n) F I = 0 a.s., and (ii) E{X(n)X(n+k)l F } = y(k) a.s. for'! k = 0,1,...,ic-1.

If condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold, then d ()

N
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converges in distribution to a normal variate with mean zero and variance f(A)

given by (2.3). We note, for example, that discrete-valued time series which

are based on mixtures, such as the discrete MA processes described in Jacobs

and Lewis (1978 a,b, 1983), Lewis (1980), and the geometric processes discussed

in Langberg and Stoffer (1985), satisfy the dependence properties of Assumption

2.3.

In order to be able to consistently estimate the Walsh-Fourier spectrum,

we need asymptotic results for smoothing the Walsh-Fourier periodogram,

IN(;k ) = dN(XN). We now state the following results in a theorem for use in

the sequel. The theorem combines the three previous central limit theorems

with a theorem given in Kohn (1980 a, Theorem 4).

THEOREM 2.1: Let condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold.

Let X j,N = j/N, 1 < j i N-1, and suppose for {Xj(l),N....Xj(M),N},

X j(m)0N X 0 as N.-, m = 1,...,M and 11j(t) N-Aj(k),NI I N- 1 for

t k, t,k = 1,...,M. Then d N N(O,A) where dN = (d N(X j(),N)...d N(Xj(M),N)'

and A is an M x M diagonal matrix with f(X) along the diagonal. Also

2

NN * f(X)XM (2.8)

-1 2so that M d'd is an estimate of f(A) having variance 2f (A)/M.
-N

If we let M + as N .- with M/N - 0 in Theorem 2.1, the smoothed

periodogram M-I4dN is a mean square consistent estimate of the Walsh-Fourier

spectrum f(A), 0 < A < 1.

Results obtained for the univariate finite Walsh-Fourier transform carry

over, in an obvious way, to the vector case, say 6(n) = (Xl(n),...,X r (n))', except
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that (cf. Kohn (1980 b), Section 3)

(1) The logical covariance will now be r x r matrices given by

- N-1
t(j) = N I {r(j 0 k - k) + r'(j 0 k - k)} (2.9)

k=O

where r(h) is the r x r autocovariance matrix of

X(n) = (X (n),...,X (n))'.
1r r

(2) The Walsh-Fourier spectrum f(A) is an r x r real positive

semidefinite matrix.

(3) Cov{l..(MI tM (X)} + fit(X)fjm( ) + fim(X)f .(X) (2.10)

as N + where I. .(A) is the (i,j)-th element of the r x rIJ X XJ

periodogram matrix I (X) = d ()dN (A) withN N -N

X -1/2 N-1

O = N I (n)W(n,X).
n=0
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3. SIGNAt-PLUS-NOISE NODELS FOR DISCRETE-VALUED TINE SERIES

In this section we discuss models for discrete systems in which Walsh-

Fourier analysis is desirable. We consider a discrete version of the signal-

plus-noise models used for sinusoidal and for Gaussian processes. In general,

write the r x 1 vector, discrete-valued time series as

4(n) = §(n) + c(n), n = 0,±1,±2,... (3.1)

where S(n) is a random stationary discrete signal which possibly depends on
unknown parameters e = (e l...e q)', and e(n) is a zero-mean discrete-

valued process (possibly white noise) which is uncorrelated with S(n). We

note that the support of X(n), S(n) and e(n) need not necessarily be the

same and that there may be some dependence structure between §(n) and E(n).

For a specific example of such a process, consider a macro model on a

finite state space (cf. Basawa and Prakasa Rao (1980)). Let X.(n), j = 1,...,r
J

denote the number of individuals in state j at time n. In particular, X.(n)
J

is the aggregate over several independent chians evolving simultaneously. Let

e., j = 1,...,r, be the probability of being in state j at any given time,J

and let Q denote the total number of individuals under consideration. Denote

the r x 1 vector X(n) = (Xl(n),...,X r(n))' and suppose that X(n) is Markov

with transition probabilities pij, 1 < i,j i r. Then, for n = 1,2,...,

r
EX.(n) = (n- )p , 1 < j < r,

* from which we obtain the signal-plus-noise model

* * , .'10'...'* V
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r
X. (n)n), I < j (3.2)

where E(n) = (e (n),...,c (n))', n = 0,1,2,..., is a zero-mean multinomial-1 r

type white noise process and is uncorrelated with the random signal
r

S(n) = (S (n),...,S r(n))', S.(n) = X.(n-1)p j, 1 < j i r. To see that1 r i=l1

e(n) and S(n) are uncorrelated, first consider one individual at a time and

let Y. (n) = 1 if individual q is in state j at time n, and Y. (n) = 0
~J,q J,q

otherwise, 1 < q i Q, 1 < j i r. Denote the corresponding error term by
r

w. (n), that is, write Y. = Y. (n-1)p.. + w. (n). Then for 1 < q Q ,J'q J'q i=1 i~q ij j,q-

j,k = ...,n,

r
Covfw. (n),Y (n-1)} = Cov{Yj (n) - i Y. (n-1)pij'Yk (n-1)}

jqq k,q j~q i1 i,q ij ,q

= kpkj - ekPkj = 0.

Noting that e.(n) is the aggregate of the independent individual error terms,

:.(n) = w (n), and that S.(n) is the aggregate of the independent
S .q=1 j q  J Q r

individual signal terms, S.(n) = I I "i (n-1)pij, we see that £(n) and
q=1 i=1 ,q

S(n) are uncorrelated. Hence, we have exhibited a model of the discrete-valued

signal-plus-noise form given in (3.1) where, in this case, the signal S(n) is a
2

function of the r transition probabilities, Pij i,j =

For the signal-plus-noise model presented in this section, Walsh-Fourier

analysis would be useful for detecting whether or not a discrete signal exists

in a given system, and if so, determine the cyclic behavior, in terms of sequency,

of the signal. Moreover, for discrete systems in which the signal is observable

but the process depends on unknown parameters, Walsh-Fourier methods can be used

to consistently estimate the parameters as well as to consistently estimate the
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error spectrum. We discuss these types of analyses in the following subsections.

3.1 Detecting a Comion Signal

Now, consider the problem of detecting whether or not a common discrete-

valued signal exists in Q replications of a discrete-valued time series

{X (n)), q = 1,...,Q which are of the signal-plus-noise form (3.1). Many ofq

our techniques follow those of their trigonometric counterparts developed by

Brillinger (1973; 1975; Section 7.9; 1980).

As an example, suppose we wish to analyze Q independent queueing situations

hypothesized to be similar. Let X (n), q = 1,...,Q, be the number ofq

individuals in queue q at time n and suppose that EX (n) = e for all n.q q

Let S(n) be a zero-mean stationary discrete-valued signal hypothesized to be

common to all queues, such as a rate of change in the number of individuals in

a queue, and let e (n), q = 1,...,Q be stationary zero-mean discrete-valued

processes with common Walsh-Fourier spectrum. Whether or not a common signal

exists among the Q queueing situations is expressed in.whether or not the

signal, or equivalently its Walsh-Fourier spectrum is identically zero.

In general, we suppose that the discrete system is of the form Xq (n),

q = 1,...,Q; n = 0,1,...,N-1, N = 2p , p > 0 integer, and can be modeled as

X (n) = e + S(n) + eq(n) (3.3)

where eq are constants, S(n) is a realization of a stationary discrete-valued

time series with mean zero, and cq(n), q = I,...,Q, are independent reali-

zations of a zero-mean discrete-valued stationary time series which is un-

correlated with S(n). Let ySS(h) and yc (h), h - 0,±1,±2.... denote the

autocovarlance functions of S(n) and c q(n), 1 q 1 Q, respectively. We

Iq
%'~ Ih :" I .'
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assume that y Ss(h) and y cc(h) satisfy condition (2.4) and that every linear

combination of S(n) and e (n), I1 q i Q, satisfies either Assumption 2.1,

2.2 or 2.3. Denote the logical covariances of S(n) and e (n), 1< q 1. Q
q

by T SS(j) and T c (j), respectively, and the respective Walsh-Fourier spectrum

of S(n) and e (n), 1 < q iQ, by f Ss M and f (A), 0 < X < 1. rhe

* following conditioins hold:

(1) EX (n) e
q q

(2) T x (j) T T5S(Q) + Tr(j),
q q

(3) qfxx (0 f SS(0) + f cc(A),

(4) Txq(j) T T5 (j), q # e

(5 =x x (A)J, q 0 Z

Before we proceed with the analyses we need the following lemma.

LEMMA 3.1: Let {X n and (Y nI be sequences of random variables on a probability

n nn

p 2 2. E-.EY2  asn thnE nY EY
Y oY EX, -EX *and asnE, hnEX2EY

PROOF: By Chung (1974, Theorem 4.5.4) the conditions EX 2 ( ,X 1 9 X. and

EX~ 2* EX 2  imply the uniform integrability of {IX,2 21 Similarly, {IY 12I is

uniformly integrable. By the Cauchy-Swartz inequality,

f Ix n Yn dP <Ef IXnI 2dP3 12 f IY,,12dPJ1
A A A
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for any set A e F and hence by Chung (1974, Theorem 4.5.3), the uniform

integrability of {IXnI 2} and {IYnI2} Imply the uniform integrability of

{IXnY n1. Clearly X Y n XY and EX Y n< , all n, hence by Chung (1974,nnnn nn

Theorem 4.5.4), EX Y + EXY.nn

The particular analyses of this section are based on the following

theorem.

THEOREM 3.1: Let {X q(n); q = 1,...,Q; n = O,...N-1} satisfy the model

conditions (3.3). Let X (m),N' m = 1,...,M be defined as in Theorem 2.1.
N-1

Then the finite Walsh-Fourier transform d Nq(j(BN) = N I X q(n)W(n, Aj(m),N

1 q i Q, has the representation

d N,q( ) = um + z qm a.s. (3.4)

as N 4 a where the urm are independent N(O,f s(A)) variates and the zq,m

are independent N(O,f (A)) variates. Moreover, u and z are mutuallyCC m q,m

independent, I < m < M, I < q < Q.

PROOF: Taking the finite Walsh-Fourier transform of (3.3) we obtain

d (Ax )=d S(A )+ de (A ) 1 (q iQN,q j(m),N N j(m),N N+ dq j(m),N

where d S(-) and de (.) are the Walsh-Fourier transforms of S(n) and c (n),N N,q q

respectively. The constant term drops out in view of (2.6) and the fact that

x. (m),N 0. Invoking Skorokhods Representation Theorem (Skorokhod (1956)) and

Theorem 2.1, dNS ) and de,(A ) have the representationsN j(m),N Nq j(m),N
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d ,( u a.s. and d () ( z a.s. as N = where the
N j(m),N m N q j(m),N q,m

u U are independent N(O,fss(A)) variates and the zq,m  are independentuq m

N(O,f (A)) variates. It remains to show that u and z are mutuallycc m q,m

independent and since they are jointly normal, it suffices to show that they

are uncorrelated. Since S(n) and e (n) are uncorrelated we have that
q

(Emd (A )d ( )} = 0 for all N, m = 1,...,M, and q = 1,...,Q.
N j(m),N N ,q j(m).N

Since yss(h) and y c(h) satisfy condition (2.4) we have by (2.7)

E{d 5 (jm ),2  f (A) and E{d (A )2 + f () as N * =, 1 _< m _< M,
N j(m),N 55 N ,q j(m),N CC

1 < q Q. Thus by Lemma 3.1 we have E{d 5 (Am )dCe (A )} E{u z
N j(m),N N q j (m),N m q,m

as N + and hence E{u m mz = 0, m = 1,...,M, q =1,...,Q.

Using the representation (3.4) 4e may proceed with the problem of determining

whether or not a common discrete-valued signal exists. Our analysis follows

that of the analysis of random effects models (cf. Scheffe (1959)). Consider

the quantities

dN, (Xj(m),N = dN,q (j(m),N I < m < M
q=1

d2  (A (3.5)M N ," j(m),N )

Q M 2.Q dMq j - .(A (3.6)

q=1 m=1 EdNq(Xj(m)N) dN,. j(m),N(

By Cochran's Theorem and in view of the representation (3.4), the quantities

(3.5) and (3.6) have the almost sure representations
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M + Z 2 EfsM)+ 2 (X)/Q~x a.s. (3.7)

i Um ,m = cc M

and

Q M 2
S (zqm  z = fC (A)x a.s. (3.8)

q=1 m=1 .,m mM(-1)

respectively, as N -, where the X2  variates in (3.7) and (3.8) are

independent. The fact that the X2 variates are independent follows from the

fact that Cov(z -z z ) = 0.q,m -,mti *,m
The test of the null hypothesis that there is no common signal, S(n) S 0

or equivalently fSS() = 0. may be examined for par4 cular sequencies X by

comparing

M 2
rnd (X j(m),N)/M

M ) d (3.9)

q EdNq(L j(m),N d N,.% j(m),N )2/M(Q-1)
q=l m=F

with an FM,M(QI) distribution. In view of (3.7) and (3.8), (3.9) has the

representation

Ef CAl) + Q fss())
fS F,M(Q) a.s.
f(A) M.M(Q-1)

as N .

Using the representations (3.7) and (3.8) it is easy to find an asymptotically

(N * w) unbiased estimate of the Walsh-Fourier spectrum f SS() of the un-

observed signal, say fSS(A). 0 < A < 1. Denoting the numerator of (3.9) by

Q ?R(A) and the denominator of (3.9) by f,,(A) we see that the desired
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quantity is

= - 1 (3.10)
f SS(A) = f--(A - Q' feM (3.).

We note that due to the invariance properties of maximum likelihood estimates

(MLEs) and the fact that the asymptotic distributions of the transforms are

Gaussian, the estimate f SS(A) in (3.10) is also the bias corrected MLE of

f SS() is an asymptotic (N - -) sense.

Next, we consider a one-way design. Suppose now that L different treat-

ments are replicated on experimental units and stationary discrete-valued time

series are recorded for each of the units. For example suppose L treatments

are given to groups of patients (Q patients in each group) who suffer from

a particular allergy. and we record the number of allergic reactions per day of

each patient for N days. The data collected will not only be discrete count

data, but for many allergies it is mostly on the order of 0,1.2,3 and very

seldom above this. Hence, a Walsh-Fourier as opposed to trigonometric de-

composition of the observations would be more useful. This type of design is

similar to the balanced one-way random effects design considered in Scheffe

(1959, Section 7.2) and in Brillinger (1980, Section 4.2). Specifically, for

q = 1,...,Q, Z = 1,...,L, n = 0,1,...,N-1, N = 2P , p > 0 interger, let

X (n) = eqt + St(n) + eqz(n) (3.11)

where eq, are constants; St(n) are L independent stationary discrete-valued

time series with mean zero, logical covariance TSS(j) and Walsh-Fourier

spectrum f(SS(); and cqL(n) are independent realizations of a zero-mean

discrete-valued stationary time series with logical covariance T (j) and
'%
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Walsh-Fourier spectrum f. (,). As in the model (3.3), St(n) and eCq(n)

are uncorrelated, q = 1,...,Q, however S.(n) and e(n) are mutually

independent for j A L and q = 1,...,Q. We assume that every linear com-

bination of S (n) and e,(n), q = 1,...,Q, satisfies either Assumption 2.1,

2.2 or 2.3, t = 1,...,L. Under the model assumptions we have

(1) EX q(n) = eqt

(2) Tx qt xqt.Q )  T SS(j) + T E(j),

(3) f (X) f x) + f (),Xq ,~Xqz = SS

(4) TXq ,Xp (j) = Tss (j), q # p

(5) fx ,Xt(A) = fss(), q A p.

It is seen that the coherence between any two observations in the same treatment

is

f SS(x)/Ef s(A) + f (Ai).

This corresponds to the intraclass correlation coefficient discussed in Scheffe

(1959).

Taking Walsh-Fourier transforms in (3.11) and following Theorem 3.1 we have

the representation

d N,q(xj(m ,) = Um + z m  a.s. (3.12)

as N + ®, m = 1,...,M, where the u m are independent N(O,f s(A)) variates

and the Zqtm  are independent N(O,f (X)) variates which are independent of

L% -, % I
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the utm, all q, t and m. Using the representation (3.12) we consider a test

for determining whether or not there is a treatment effect, that is, whether

or not SL(n) = 0 for t = 1,...,L, and all n. Equivalently, we test

whether or not f () s 0, 0 < A < 1. We may now follow the one-way randomSs
effects analysis given in Scheffe (1969, Section 7.2). Define

Q

-1
d (XQ d (A <N) < M
NL j(m),N q1 N,q j(m),N

q=1

-1 L
dN. (A )L I d (A , m< M

and appropriate sums of squares

M L
Q I I [dNt(x.mN dNo Ed d,(( m 2  (3.13)

m=1 t=N ) -dN,..(j(m),N)

M LQ 2
X X [d dN~q q(xj(m)N N -t Ne( j(m),N 1 (3.14)
m=l t=1 q=1

In view of (3.12), (3.13) and (3.14) have the almost sure representations

M L 2

Q I I (ut+ z. - u -z )2 (3.15)
m=l z=1 om .-m

and

M L (z -z 2(3.16)

m=1 Z=I q=1 qtm "(3

respectively, as N . -. We may carry this representation one step further and

- .1- '.r ~' r. 9I~'. . Y. .\. V' ~ -.I
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represent (3.15) and (3.16) as

[Q fs(A) + f (M)xM(L_) 8.s. (3.17)

and

2
f ()X a.s. (3.18)
Cc ML(Q-1)

as N + =, where the X2 variates in (3.17) and (3.18) are independent.

The test of the null hypothesis fss (A) = 0 now follows easily in view of

(3.17) and (3.18). For a particular sequency A, compare the statistic

M L 2
Q I I Ed N=1 (XJ(m)-Nd - (Aj(m)JN )32 /M(L-1)

M L ,)2/M

[dNN) - d ( /ML(Q-1)
m= =1 q= J(m) N' j(m),N

with an FM(L_1),ML(Q_1) distribution.

To estimate the Walsh-Fourier spectrum of the signal, fSS( ), one may use

representations (3.15), (3.16), (3.17) and (3.18). That is, the expected value

of (3.15) divided by M(L-1) (cf. 3.17) is Q fSS( ) + f C(A) and the expected

value of (3.16) divided by ML(Q-1) (cf. 3.18) is f (A). This is similar to
LE

the previous case (cf. 3.10) and one may proceed as was done there.

As suggested in Brillinger (1973, 1980), it is helpful to graph the above

statistic as a function of sequency, A, and to further indicate the null significance

on the graph. However, in doing so, one must keep in mind that the asymptotic

(N - -) covariance of the Walsh-Fourier transform at tw- distinct frequencies

is not necessarily zero in contrast to the tr*gornometric case.

-,
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3.2 Estimating Regression Parameters When the Discrete Signal is Observable

In this section we concentrate on the discrete signal-plus-noise model

where the signal is observable but the vector process of interest, X(n),

n = 0,1,...,N-1, depends on unknown regression parameters. At the end of

this section we apply the results of this section to estimating the transition

matrix in a Markov model. We suppose that we may write the model (3.1) in the

r x 1 vector form

X(n) = 9 + 8 S(n) + e(n), (3.19)

where e is an r x I vector of constants, S(n) is a q x 1 vector,

observable discrete-valued signal, 1 is an r x q matrix of regression para-

meters, and c(n) is a discrete-valued zero-mean white noise process which is

uncorretated with the signal S(n). Let rs (h) denote the autocovariance
SS

matrix of S(n), where Ilrss(h)l l < . Further, we assume that every linear

combination of the components of e(n) satisfy either Assumption 2.1, 2.2 or

2.3. Let TSS(j) and T (j) be the logical covariance matrices of S(n)

and e(n), respectively (cf. 2.9) and note that TEC ) = 0 for j A 0 where

O is the r x r matrix of zeroes. Let fs s (A) = {fs a (A)}, 1 < a,b < q,

be the q x q positive definite Walsh-Fourier spectrum of S(n) and let

f ( ) = {f (a)}, 1 < a,b < r, be the r x r Walsh-Fourier spectrum ofLL La ' b- -

v (n).

Taking transforms in (3.19) and following the previous section we have the

representation

X( ) = 8 d5 (A ) + z + 0 (1), m = I,...,M, (3.20)-N j(m),N ZN j(m),N -M -a.s.
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where 0 (1) denotes a vector variate tending to the zero vector almost

surely as N - -, z are independent multivariate N(Q,f M0) variates;
.m EE

N-1 N-1

(X j(m),N = N°1 /2 N X(n)W(n, j ) and dN(X (m) N I §(n)W(n j(m)NN ~)Nn=O " j(m),N) -N (m),N) n= ()Wn0jm'
n=O n=O

denote the r x 1 and q x 1 finite Walsh-Fourier transforms of the vector

time series X(n) and §(n), respectively.

If we assume that M > q+r, we may consider the asymptotic problem of

estimating the parameter matrix B and the error spectrum in the multivariate

analysis setting (see Anderson (1958), Chapter 8). Similarly, tests of hypotheses

about the elements of 8 may be carried out by MANOVA techniques with an

appropriate partitioning of that matrix (cf. Anderson (1958), Section 8.3).

Following least squares theory in view of (3.20), the estimate of 8 as a

function of sequency is given by

M X 1M
M N )d( d( I s(x ) )(A (3.21)

M,N(A) = -N (Xj(m),N )N j(m),N -N j(m),N N j(m),N
m=l m=l

and the corresponding estimate of the error spectrum f (A) is

-MN- M X
f ()= M coX 0^ cg( )314(AfM'N(A) = MN Ed ( -

8 )N N j(m),N N j(m),N
£ '£ m= -N (m).N)- MN( m)'N)

-M,N ( N)dN j(m),N )3. (3.22)

Before discussing the consistency of the estimates BM,N (A) and fM.N(x),

we state the following results which follow from the model assumptions and the

results of Section 2. First, denote

13
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f MN (x) = M 1  (A )dS dS  I < a~b < q (3.23 a)
Sab m N, j(m),N N ,b j(m),N

" fM,Nb) = -1 M dSaX Nd Xjm
f ~ (A) b N IdC ) < a < r, 1_ b < q (3.23 b)

f aIsN (=) N M- a d€ ), N€ (m),N )  1<ab<r(23)

M

f 5 W m= X a (AO )dS (x I < a , 1 r (3.23 b)

E aPC b m=1 N'aL j(m),N Nb j(m),N

weedS (-) and d C (.) denote the finite Walsh-Fourier transform of the
!I whr N,a  N,a
!:1 'a-th element of §(n) and C(n), respectively. Then as M,N =with M/N 0

we have

(1) E f aSM 'N MX fsSbS(0),

(2) E f M,N (,x) f (M)
ataC b  C at Cb

£~ NL

a3) b f M N () b,3 E Ca'Sb

(4) M Var{f S 'Nsb() O 2[EfSa'S (;0]2

a~ bNa#a

(5) M Var{f ME N  (X)} . 2[

(6) M Var{fM'N) ( * f () M.
Ca'°b L aCa sb p

It follows from the above that as M,N 0,with M/N 0 f SM N  (x) f ,

MN 2
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fM,N (W) - f (A), and fMN (W) -0 in mean square and hence in pro-
a, Cb Ca, b CaS b

bability.

We now show the consistency of the estimates (3.21) and (3.22).

THEOREM 3.2: Let the model assumptions (3.19) be satisfied. Then as M,N +
A MN

with M/N * 0 the estimates MN(A) given in (3.21) and f (A) given in

(3.22) are consistent in probability for S and f (A), 0 < X < 1,
cc

respectively.

PROOF: Using the definitions of (3.23), write

8 (A = + M:N(A)EfM;N(X)]l(324
NMN + , NS

where f MN(A) = {fM,N()} and f (X) = {faSb ()} are r x q and q x q
E S L a b S Sasb

matrices, respectively. By previous results we know that as M,N + with

M/N -0, f ;N(X) " fS(A) which is positive definite, and fS ) 0rx q

where 0rx q  is an r x q matrix of zeroes. In view of (3.24) we see that

BM,N(A) is consistent for 8.

To show the consistency of fM(A) given by (3.22), first note that we

may write the r x r matrix fM,N() M)= {f} (A)) whose elements are given

by (3.23 
c) as

f M(A) = M-1 M [d X(A ) - 8 g5(AL )3[d X(A ) S S(X JI
CC I= -N j(m),N N j(m),N -N j(m),N -N j(m),N; ; : m= I'

Since f M(A) is consistent for f (A), it suffices to show that
iM N(M - f M9N M 0 in probability as M,N * with M/N * O. To see this

CE EL
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wr ite

; M, N(M, ) -I1  M XS1 ,
f= c (A =M Xd (j(m),N )dN (j(m),N)1 8 (A)]'W

+ s-8M,N(AM] m= I-N( j(m),N )dN (Xj(m),N

E 8( A )- - 8] St 5( d () 8

+ [$M,N (X i M 1 -N (Xj(m),N )dN (Xj(m),N

+0M,N mX) -dN (Xj(m),N -dN ( (m)N gMN 0) $.(.5

We consider the first term of (3.25), the other cases will follow by similar

methods. Expanding IdX(A )we have-N j(m),N

MN

+ fS C;M 1 M,N 00 1- Or

in probability as M,N -, with M/N *0 by (3.24) and the convergence results

.4for f(A) and f MN(A).

We close this section with an application to Markov chains. In particular,

consider the macro model given by (3.2) and suppose that we are interested in

estimating the transition probabilities p~.We shall assume that detailed

transitions are not available, otherwise, the p.. may be estimated by MLE

techniques, see Basawa and Prakasa Rao (1980, Section 2.1). Recall that the
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model is of the form

r
X (n) = k Xk(n-l)pkZ + £t(n), 1 < £ < r, (3.26)

k= 1

where X (n) is the (aggregate) number of individuals in state t (over several

independent Markov chains) at time n and t(n) is zero-mean white noise

which is uncorrelated with X k(n-1) for k = I ...,r, and r is the number

of states. We suppose that data is available in the form {Xt(n), t = 1,...,r;

n = O,...,N-11 and that the total number of individuals in the system, viz.
r
I X t (n), is fixed. To avoid singularities we remove X (n) from the model

(3.26). Let T be the total number of individuals in the system, then for

= I,... r-1,

r-1 r-I r-I
Xt(n) = T( - I pjn-1) X + I Xk (n-)p j + E(n). (3.27)

j=1 j=1 k=1

r-1 r-1
Now, put t = T(I - j pjt), S.(n)= X.(n-1) + I Xk(n-1) with S.(O) = 0,N pT J = k=1 J

and let X(n) = (X (n),...,X r l(n))', e = (el,... ,r-1

S(n) = (SI(n)o....Sr-1(n))' and £(n) = (e1 (n),...,r_ 1 (n))'. We have already

seen that E(n) and §(n) are uncorrelated. In view of (3.27) the model

(3.26) may now be represented in the form of (3.19), that is

X(n) = 6 + P S(n) + e(n), n > 1, (3.28)

where P is the (r-1) x (r-1) matrix of unknown transition probabilities
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rP1 P2 .... Pr-.

P P12 P22  .... Pr-1,2

Pl,r-1 P2,r-1 .... Pr-1,r-1

If we choose M frequencies, Xj(m) '  m = it....M, Xj( 0 in such a

way that M > 2(r-1) we obtain the consistent estimate of the transition matrix

P(A) = N N(1)EfSSN(A)]-
PO) fXS M 55S w

where f MN() = M'1 M dX( )d S?()where N)=-I N (Xj(m).N - j(m.Nm=1

St)d (XsN) I N(Xj(m),N -N j(m),Nm=1

X ) = N- 1/2 N-I

ON (Aj(m),N N I nlW(nAjlm),N) and

.(, m N N 1 12  N-1 r-I
) N {X(n-1) + I X(n-I)IW(n,Aj(ml,Nj m)' n=1 k=l

In this case we also obtain a consistent estimate for e. namely,

r-1

-8t(A) = T( - I pj , =
j=1

where pjt(A) is the jZ-th element of P(A). The consistent estimate of the

error spectrum is
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f = fM.NQw - P(),fMI , X

The actual implementation of this estiamtion procedure is then based on the

methods described in the Appendix A.
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APPENDIX A

In this appendix we discuss the computation of the finite Walsh-Fourier

transform for samples of length N = 2p , p > 0 integer. The discrete Walsh

functions are calculated via the Hadamard matrix, H(p), which is defined to

be the symmetric orthogonal N x N matrix whose (u,v)-th element, u,v = 0,1,...,N-1,
p-1 u.V.

is equal to *(u,v) = H (-1) J J where the binary representations of u and
j=O

v are given by (up-lup_2... ,uO ) and (Vp-l,V p_2,...Vo), respectively,

u. and v. are either 0 or 1. For example, with N = 8. the (1,5) elementJ J
0+0+1

of H(3) is 0(1,5) = (-I) = -1 whereas the (3,7) element is

0(3,7) = (-1) 0+1+1 = 1. The Hadamard matrix gives the discrete Walsh functions

as rows (or columns) in what is called natural or Hadamard ordering. To obtain

the Walsh functions in sequency order, we can reorder the rows of H(p) according

to the number of sign changes. We denote the sequency or Walsh ordered Hadamard

matrix by HW(P). An alternate method of obtaining HW(p) from H(p) uses

"bit-reversal Gray code" to rearrange the rows, however this is essentially the

same technique as counting the sign changes, see Ahmed and Rao (1975) for

details. Since these approaches Involve counting sign changes, they are not

very efficient procedures. We shall discuss a fast Walsh-ordered Hadamard trans-

form in a moment. The Hadamard matrix can be generated recursively, H(O) = 1,

and

HF~l r H')Hk k =0,1.2,....H(k) H(k)
H(k+1) 1 k 012..

SH(k) -H(k) J

so for example

MCI'
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H(1) = and H(2)= -1

Denote H(2) = Cho(2),h1(2),h2(2),h3(2)] where h.(2). i = 0,1,2,3 is the

i-th column of H(2), then the corresponding Walsh-ordered Hadamard matrix is

H (2) = Eho(2),h(2),h (2),h,(2)). The procedure of obtaining the Walsh-orderedW -0'2 -3 '-1

Hadamard transform from its definition either requires storage of the Hadamard

matrix, or recomputation whenever the elements of Hw(P) are needed. Hence,

either the sample length is restricted to about p = 10 or 20, or the procedure

is extremely slow. There are, however, fast methods which can reduce the

number of computations (additions and subtractions) by about 2 /p times less

than by using the definition. The method we discuss here may be found in Ahmed

and Rao (1975, Chapter 6) who also gives a computer subroutine. The Walsh-

Hadamard matrix can be computed as

p
H w(P) = U H.(p) • B (Al)

where

F F~0

F s Fr 
G

s  
s .wihH(p) Fs , s =

0 s

( w ith
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Fs

s  -I j

I -I

G=
s

s s j

and I sbeing the s x s identity matrix. The matrix B in (A1) is a matrix

which bit-reverses the order of the data. For example, with N = 23 the

bit-reversal of 1 a (0,0,1) is 4 = (1,0,0), and the bit-reversal of

3 = (0,1,1) is 6 = (1,1,0) so that X(1) is exchanged with X(4) and X(3)

is exchanged with X(6) in the data vector. !f X = (X(O),...,X(N-1))' is

the data vector, N = 2P , the fast finite Walsh-Fourier transform is computed

as

-1/2 -1/2 p
dN (A) = N HW(p)X = N Ti Hi(p)-B X (A2)

i=1 ~

where A N = (O/N,1/N,...,(N-1)/N)'. For example, if N = 2 , the Walsh-ordered

Hadamard matrix can be decomposed as

HW(3 ) = [ G1 F G [F 2  G ]F 3 B

L0 1L 0 G 2 J

where
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ri o o o o o o 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 110 0 0 0

0 0 0 01 0 0 0 1J

The vector of periodogram ordinates is obtained by squaring each element

of d (, ) given in (A2). Let IN(m) = d2(m/N) denote the m-th periodogram
-N N NNN-1

ordinate, m = 0,1,...,N-1. It is seen that I N(in) I ; (j)W(j~m/N) whereN-N j=0

-1
T(j) = N-  I X(k)X(j * k). Employing relationships (2.5) and (2.6) we may

k=O
write

N-1

;(j) = N- 1 I IN(m)W(m,j/N). (A3)
m=O

Thus, for large N, the quickest way to compute ;(j) is to use the fast Walsh-

Fourier transform twice, once to compute IN (m) and once to compute the right

hand side of (A3).
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APPENDIX B

In this appendix we prove the central limit theorem stated in Section 2

which is based on condition (2.4) and Assumption 2.3. The proof of the theorem

is based on a martingale central limit theorem given in Brown (1971, Theorem 2)

and a limit theorem for approximating sequences given in Anderson (1971,

Theorem 7.7.1). We now state and prove the theorem.

THEOREM B: Let {X(n); n = 0,±1,±2,...} satisfy condition (2.4) and Assumption

2.3. Then the discrete Walsh-Fourier transform, dN(X), converges in distri-

bution to a normal variate with mean zero and variance f(X) given by (2.3).

1 12N-1 1/ N

PROOF: Fix X e [0,1) and write d ( ) = N-1/2 X(n)W(n ) =-1/2 Yn

n=O n= n
Choose an integer k such that 2K < k < N and put T = EN/kJ where [-3 is

the greatest integer function. For j = 1,2,...,T define

Yj,k = Y(j-1)k+l + Y(j-1)k+2 Yjk-K and Zj,k = Yjk-K+l + Yjk-K+2 + + Yjk'

-1/2 T -1/2
and let uk,n -N I Zj,k and v = N (Yk++ + ... +

j=1

Clearly dN() = N 2  YJk + uk,N + vk,N. We will show that vk, N  0 in

mean square as N - - uniformly in k, u kN 1 0 in mean square as k -

-1/2 T
uniformly in N, and N Y Yk converges in law to a normal variate as

j=k
N. and k -. Thus, the theorem will follow from Anderson (1971, Theorem

7.7.1).

Using Minkowski's inequality with r = N-Tk < k and the fact that

IW(n,X)l = 1,

o
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Ev2 1/2 -_1/2 {~ /
k N kT+1+N

<N_ 1/2 r) E{IX(kT+j)I 2 11/ 2

P-1

from which we obtain

E~v 2 r 2 N_1 (O) <k 2 -_1 YO
k N} NyO

and hence the desired result follows. In a similar manner we can show that

E{u 2 )< TNl K 2Y(O) < k- I C2Y(O)
k ,N

to obtain the desired result for u kN- /

To establish a central limit theorem for N_ Y jkwe use a martingale
j=k

central limit theorem found in Brown (1971, Theorem 2). We shall follow Brown's
T

notation. Let k be fixed and let S kT= I Yj. ; recall that F In is the
j=1

a-field generated by {X(j), j in1. Then, {S k,'F kTK; T = 1,2....} form

a martingale. To see this note that

T
E{S kTJ I F~. =Ti I Y jk+ EfY T Ik F IT-

The terms in Y T1kare {X(n)W(n,X), n = kT + j; .j = 1,2,....k-c}. We

are given that E{X(kT+j) I F kT =- 0 a.s. and since F k-c a F TjK

1 j <k-ic. we have

E{X(kT+j)l F kTI = EE{X(kT+j)l F T }- F kT- 0 a.s.
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and hence E{YT+I,kJ FkTK} = 0 a.s. as was to be shown. Following Brown (1971),

pu 2  T y21 2 V 2V 2

put E( j k(j-1)-K s = EV . A typical term in Vk,Tj=k,T ,T

is E{Y( l1)k+Y(j-1)k+mI Fk(._)_}, 1 < Z,m < k-K; 1 < j i T. Let

n= (j-1)k + Z and n2 = (j-1)k + m, then by hypotheses of the theorem,

E{y ny n2IF(j-l)k-K W(n1 0 n2 ,X)E{X(n )X(n2)I F(jl)k-K

= W(n1 0 n2 ,X)y(n2 -nl) a.s.

-"E{y nlY n2

2 T 2
Hence, V = EY2 = EV2  = s a.s. The application of Theorem 2 ofk,T j*l k,T k,T

Brown (1977) entails showing that as T ,

i s-2 V2  1, and
k,T k,T P

2
(ii) s I {2 II.kT j=1 'l k k sI T)} 0

for any e > 0, where I(.) is the indicator function. We have already

established (i) and we proceed with establishing (ii). First, we show that
2+6} 2+6}

sup n E{IX(n)I 2 < - for some 6 > 0 implies that sup. E{IY j,k I .

Let nt = (j-1)k + t and a(nt) = W(nt,X). Then by Minkowski's inequality

E{IY.k 2 +6 }2+6 = E{la(n )X(n ) + ... + a(n )X(nk_ )I2}

k-2
I E{lX(n ),2+6 }

2 *

Z= 1
"i -K) p E{=1n~ 2+ I +
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so that for any j,

Eijk2+6} _ 2+6 12+6}
E{YjkI + }< (k-K) supn E{IX(n)2 <

as was to be shown. Following a similar argument to the one above, we can
show that EY2  is uniformly bounded, and since EY2  does not vanish as

, k j,k

j + we see that s2 = O(T). Also, one can show that since® S~k,T•
Sk2+6

supi E{I 2+ < - for some 6 > 0, there exists a random variable Yk

with EYk < - such that

E{y2 I(IY 2 I(IY

E{YklIjkI >~ u)) < E{Yk I . u)'

for all j and all u > 0. See Stoffer (1985, Lemma 3.2). Thus,

T

kT k 2 l(lYjk .1 e~ s.) i s 2 T E{Y 2l(IY I > es)}-S = kTk,T k k - _
j=1

as T + =. Hence by the Brown (1971) mar+ingale central limit theorem we have

that for fixed k, T-1 / y2 T (N1/2T-1/ 2 )N-1/2 T y2  converges in
j=1 Jk j=, j,k

law to a normal variate whose variance depends on k. as T .w or T
1/2 -1/2 -1/2 -1/2 T yequivalently N =. Clearly then, for fixed k, (N T k )N j=1 Y k

j~k

converges in law to a normal variate as N + =. Letting k - - establishes

the desired result.
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